
SANDIA REPORT
SAND2005-4237
Unlimited Release
Printed July 2005

Explicit A Posteriori Error Estimates
for Eigenvalue Analysis of
Heterogeneous Elastic Structures

T. F. Walsh, G. M. Reese, and U. L. Hetmaniuk

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

ITED

STATES OF AM

ER
IC

A



SAND2005-4237
Unlimited Release
Printed July 2005

Explicit A Posteriori Error Estimates for Eigenvalue

Analysis of Heterogeneous Elastic Structures

Timothy F. Walsh and Garth M. Reese
Computational Solid Mechanics and Structural Dynamics

Ulrich L. Hetmaniuk
Computational Mathematics and Algorithms

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Abstract

An a posteriori error estimator is developed for the eigenvalue analysis of three-dimensional
heterogeneous elastic structures. It constitutes an extension of a well-known explicit es-
timator to heterogeneous structures. We prove that our estimates are independent of the
variations in material properties and independent of the polynomial degree of finite ele-
ments. Finally, we study numerically the effectivity of this estimator on several model
problems.
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1 Introduction

Eigenvalue analysis is common in many areas of engineering. For example, the knowledge of
the eigenspectrum of a linear structure allows an analyst to decide whether an excitation fre-
quency will be close to a resonance frequency, which could cause vibrations of large amplitude.
The eigenpairs of a linear structure can also determine efficiently, in a linear superposition
procedure, its transient or frequency response. For large scale heterogeneous structures, where
the finite element models reach ten millions or more degrees of freedom, researchers at Sandia
National Labs [12] frequently compute thousands of eigenmodes. In order to have confidence in
the accuracy of these modes and to adaptively refine the mesh, quantifying the discretization
error is important and a posteriori error analysis becomes critical.

A posteriori error estimation has received considerable attention over the last three decades.
Recent reviews [1, 15, 16] give excellent summaries and background on the subject. Unfortu-
nately, as far as eigenvalue analysis is concerned, a posteriori error estimators are less studied
than the estimators for traditional static elliptic or time-dependent problems. Therefore, the
aim of this paper is to analyze an a posteriori error estimator in the context of structural
eigenanalysis without damping but with heterogeneities.

Verfürth [14] has proved the equivalence between an explicit estimator and the errors on the
eigenvalue and the eigenvector, while using a general framework for non-linear equations with
the assumption that the computed eigenpair is close to the continuous eigensolution. Under the
same assumption, Larson [7] recently introduced explicit a priori and a posteriori estimates for
the eigensolution of the scalar elliptic operators. For smooth eigenvectors, Larson’s estimates
bounded the errors in eigenvalues and eigenvectors in terms of the element-wise residuals, the
mesh size, and a stability factor. Heuveline and Rannacher [6] extended the work of Larson
[7] to unsymmetric operators by representing the eigenvalue problem in the more general
framework of a nonlinear variational problem. Unfortunately, their least-squares approach
requires the a priori knowledge of the smoothness of the continuous solution and it provides
only upper bounds of the error [1]. Requiring the a priori knowledge of the smoothness is a
disadvantage that makes these estimates impractical for general three-dimensional structures.

Oden et al. [11] used the so-called goal-oriented error estimation approach, also commonly
referred to as the quantity of interest error estimation approach. Choosing the eigenvalue as
a quantity of interest, their approach defined an implicit error estimate at the element level,
which eliminates the typical unknown constant present in explicit estimators. But bubble
spaces must be used for the local linear solves.

For piecewise linear elements and for the Laplacian operator, Duran et al. [5] proved that
a simple explicit, residual-based estimator was equivalent to the error in the eigenvectors, up
to higher order terms. They also proved that the error was equivalent to the jump term in
the element level residual, and thus eliminated the interior residual term from the estimator.
Their approach is close to the one used in this paper for treating the elasticity equation with
higher degree elements.

The previously described estimators do not consider the common case of heterogeneous
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materials in structural analysis. The goal of this paper is to analyze an explicit residual-based
estimator that treats the case of high order finite elements and can also handle discontinuous
material coefficients. Our approach follows closely the work of Araya and Le Tallec [2] and the
analysis of Bernardi and Verfürth [4], which considered source problems.

The outline of the paper goes as follows. In section 2, we present the model problem. In
section 3, we recall some known a priori error estimates for its finite element approximation.
In section 4, we define the explicit estimator and prove its equivalence with the error in the
eigenfunction up to high order terms. We give also an upper bound on the error for eigenvalues.
Finally, numerical examples illustrate the effectivity of this estimator.

2 Model problem and notations

Let Ω ⊂ R3 be a bounded domain, with Lipschitz continuous boundary Γ = ΓD∪ΓN , ΓD∩ΓN =
∅, and meas(ΓD) > 0.

We consider the eigenvalue problem: find (u, θ) such that

−∇ · σ(u) = θρu in Ω, (1a)
u = 0 on ΓD, (1b)

σ(u) · n = 0 on ΓN . (1c)

The stress tensor σ(u) is related to the strain tensor ε(u),

ε(u) =



∂1u1

∂2u2

∂3u3

(∂3u2 + ∂2u3)/2
(∂3u1 + ∂1u3)/2
(∂2u1 + ∂1u2)/2

 , (2)

by the material law
σ(u) = Dε(u), (3)

where D is a function with values in symmetric positive definite matrices satisfying the property

0 < dminyTy ≤ yTD(x)y ≤ dmaxyTy, ∀ x ∈ Ω. (4)

We assume that the density function ρ is bounded

0 < ρmin ≤ ρ(x) ≤ ρmax, ∀ x ∈ Ω. (5)

Such a Sturm-Liouville problem has an infinite sequence of real eigenvalues

0 < θ1 ≤ θ2 ≤ · · · ≤ θj ≤ · · · → ∞,
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and an associated complete set of orthonormal eigenfunctions∫
Ω
ρuj · ukdx = δjk.

We define also a weak formulation: find (u, θ) ∈ H1
ΓD

(Ω)× R

a(u,v) = θb(u,v), ∀ v ∈ H1
ΓD

(Ω), (6a)
b(u,u) = 1, (6b)

where

a(u,v) =
∫

Ω
σ(u) · ε(v)dx =

∫
Ω

ε(u)TDε(v)dx, (7a)

b(u,v) =
∫

Ω
ρu · vdx, (7b)

and
H1

ΓD
(Ω) =

{
v ∈ H1(Ω) | v = 0 on ΓD

}
. (8)

Note that the bilinear form a is symmetric, coercive, and continuous. The form a satisfies

C(Ω,ΓD)dmin‖v‖2
H1(Ω) ≤ a(v,v), (9a)

a(u,v) ≤ dmax‖u‖H1(Ω)‖v‖H1(Ω). (9b)

Remark 1. When the domain Ω is homogeneous and isotropic, we have

D =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

 , (10)

where the Lamé constants λ and µ satisfy

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (11)

The eigenvalues of D are
{3λ+ 2µ, 2µ, 2µ, 2µ, 2µ, 2µ} . (12)

When E > 0 and 1/2 > ν ≥ 0, we have

dmin = 2µ, dmax = 3λ+ 2µ, and
dmax

dmin
=

1 + ν

1− 2ν
. (13)
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3 The discrete problem

3.1 Finite element discretization

Let Th, h > 0, be a family of partitions of Ω into tetrahedra or hexahedra. Each partition Th

must be consistent with ΓD and ΓN , i.e. ΓD and ΓN are the union of faces of elements of Th.
We write, for any element K, hK = diam(K) and, for any face F , hF = diam(F ). We denote
by Fh the set of all faces in Th. Fh naturally splits into the sets Fh,Ω, Fh,D, and Fh,N of all
faces in Ω, ΓD, and ΓN , respectively.

Over each element K, we introduce a suitable space of polynomials Qp(K) of degree smaller
than p. We always demand that the degrees of freedom are suitably constrained so that an
approximation function vh is continuous over Ω and that vh satisfies the Dirichlet boundary
condition. This construction leads to a space of piecewise polynomial functions V p

h ⊂ H1
ΓD

(Ω).

3.2 A priori error analysis

The finite element approximate solutions are defined by: find (uh, θh) ∈ V p
h × R such that

a(uh,vh) = θhb(uh,vh), ∀ vh ∈ V p
h , (14a)

b(uh,uh) = 1. (14b)

This approximate problem reduces to a generalized eigenvalue problem involving symmetric
definite positive matrices, which admits strictly positive eigenvalues

0 < θh,1 ≤ θh,2 ≤ . . . ≤ θh,Nh
. (15)

A priori error estimation for eigenvalue problems is well documented in [3, 13]. The a
priori estimates provide convergence rates for finite element approximation of eigenvalues and
eigenvectors.

Theorem 1. Let assume that, for an arbitrary eigenpair (u, θ) of problem (6), the eigenvector
belongs to Hs(Ω) (s > 1). There exists a constant C, independent of h, such that, for h
sufficiently small, an approximate eigenpair (uh, θh) satisfies the estimates

θ ≤ θh ≤ θ + C
h2min(s,p+1)−2

p2s−2
(16a)

√
a(e, e) ≤ C

hmin(s,p+1)−1

ps−1
(16b)

√
b(e, e) ≤ C

hmin(s,p+1)

ps
(16c)

(16d)

Note that the constant C depends on the eigenvalue θ, the domain, and the mesh regularity.
An interesting result is that the eigenvalues converge at twice the rate for the eigenvectors in the
energy norm. These results will be used later to define the higher order terms in the estimates
and also to verify the convergence rates predicted by the a posteriori error estimators.
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4 Explicit a posteriori error estimates

We introduce an error estimator and prove its equivalence with the error up to higher order
terms. The approach is similar to the ones described in [4, 5].

Assumptions

We assume in this section that the functions D and ρ are piecewise constant, i.e. D and ρ are
constant on each element K. In addition, we assume that the family of partitions Th is regular
enough to allow the following result.

Assumption 1. There exist two positive constants cI1 and cI2 depending only on the mesh
regularity and a linear operator

Ih : H1
ΓD

(Ω) → V p
h (17)

such that for any v ∈ H1
ΓD

(Ω), for any element K, and for any face F

‖v − Ih(v)‖L2(K) ≤ cI1
hK

p
√
dK,min

√∫
ωK

σ(v) · ε(v) (18a)

‖v − Ih(v)‖L2(F ) ≤ cI2

√
hF

dF,minp

√∫
ωF

σ(v) · ε(v) (18b)

where the patch ωK (resp. ωF ) contains the element K (resp. the face F ). dK,min denotes here
the smallest eigenvalue of D over the element K. dF,min is equal to min(dK1,min, dK2,min), with
K1 and K2 the two elements adjacent to F .

Note that each element K and each face F is contained in a fixed finite number of patches
ωK and ωF . Similar estimates have been proven in Bernardi and Verfürth [4] (see lemma 2.8
where p = 1) and in Muñoz-Sola [10] (for the Laplacian operator).

Notations

With each face F in Fh,Ω, we associate a unit normal nF and denote by JF (φ) the jump of a
given function φ across F in direction nF . We set

RK(uh, θh) = ∇ · σ(uh) + θhρuh, K ∈ Th, (19a)

RF (uh) =


JF (nF · σ(uh)), F ∈ Fh,Ω,
nF · σ(uh), F ∈ Fh,N ,
0, F ∈ Fh,D.

(19b)

Let the global error estimator η be∑
K∈Th

h2
K

dK,minp2
‖RK(uh, θh)‖2

L2(K) +
∑

F∈Fh

hF

dF,minp
‖RF (uh)‖2

L2(F )


1
2

. (20)
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Finally, for the sake of abbreviation, we denote

aK(u,v) =
∫

K
σ(u) · ε(v), ‖u‖a,K = aK(u,u)1/2,

and
bK(u,v) =

∫
K
ρu · v, ‖u‖b,K = bK(u,u)1/2.

4.1 Global upper bound for eigenvectors

For any eigenpair (u, θ) and an approximate solution (uh, θh), we denote the error function
e = u− uh. We assume the following properties{

a(u,u) = θ,
b(u,u) = 1,

{
a(uh,uh) = θh,
b(uh,uh) = 1.

We start by giving some general results.

Lemma 1. We have
b(θu− θhuh, e) =

θ + θh

2
b(e, e). (21)

Proof. We expand the left hand side of (21)

b(θu− θhuh, e) = b(θu− θhuh,u)− b(θu− θhuh,uh),
b(θu− θhuh, e) = θ + θh − (θ + θh)b(u,uh),

where we used the normalization property. We now expand the right hand side of (21)

b(e, e) = b(u,u)− 2b(u,uh) + b(uh,uh),
b(e, e) = 2− 2b(u,uh).

Combining these two expansions, we get

b(θu− θhuh, e) = θ + θh − (θ + θh)(1− 1
2
b(e, e)),

b(θu− θhuh, e) =
θ + θh

2
b(e, e).

Lemma 2. For any v ∈ H1
ΓD

(Ω), we have

a(e,v)− b(θu− θhuh,v) =
∑

K∈Th

∫
K

(∇ · σ(uh) + θhρuh) · v

−
∑

F∈Fh,N

∫
F

n · σ(uh) · v −
∑

F∈Fh,Ω

∫
F
JF (n · σ(uh)) · v. (22)
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Proof. For any v ∈ H1
ΓD

(Ω), we have

a(e,v) =
∑

K∈Th

∫
K

σ(e) · ε(v).

Integrating by parts over K, we obtain

a(e,v) =
∑

K∈Th

∫
K

(−∇ · σ(u) +∇ · σ(uh)) · v +
∑

K∈Th

∫
∂K

n · σ(e) · v,

a(e,v) =
∑

K∈Th

∫
K

(−∇ · σ(u)− θhρuh +∇ · σ(uh) + θhρuh) · v

+
∑

K∈Th

∫
∂K

n · σ(e) · v.

To simplify the last expression, we use the following properties of the eigenvector
−∇ · σ(u) = θρu in Ω

n · σ(u) = 0 on ΓN

JF (n · σ(u)) = 0 on F ∈ Fh,Ω.

We obtain

a(e,v) =
∑

K∈Th

∫
K
ρ(θu− θhuh) · v +

∑
K∈Th

∫
K

(∇ · σ(uh) + θhρuh) · v

−
∑

F∈Fh,N

∫
F

n · σ(uh) · v −
∑

F∈Fh,Ω

∫
F
JF (n · σ(uh)) · v.

We state now the upper bound result.

Proposition 1. The energy norm of the error satisfies√
a(e, e) ≤ Cη +

θ + θh

2
b(e, e)√
a(e, e)

(23)

where the constant C depends on Ω, ΓD, and the regularity of Th.

Proof. For any wh in V p
h , we have

a(e, e) = a(e, e−wh) + a(e,wh)
a(e, e) = a(e, e−wh) + a(u,wh)− a(uh,wh)
a(e, e) = a(e, e−wh) + b(θu− θhuh,wh)
a(e, e) = a(e, e−wh)− b(θu− θhuh, e−wh) + b(θu− θhuh, e)
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We use equations (21, 22).

a(e, e) =
∑

K∈Th

∫
K
RK(uh, θh) · (e − wh) −

∑
F∈Fh

∫
F
RF (uh) · (e − wh) +

θ + θh

2
b(e, e)

Using the Cauchy-Schwarz inequality and inserting relations (18), we obtain

a(e, e) ≤
∑

K∈Th

cI1
hK

p
√
dK,min

‖RK(uh, θh)‖L2(K)‖e‖a,ωK

+
∑

F∈Fh

cI2

√
hF

dF,minp
‖RF (uh)‖L2(F )‖e‖a,ωF +

θ + θh

2
b(e, e)

a(e, e) ≤ max(cI1, cI2)η

∑
K∈Th

‖e‖2
a,ωK

+
∑

F∈Fh

‖e‖2
a,ωF


1
2

+
θ + θh

2
b(e, e)

a(e, e) ≤ Cη
√
a(e, e) +

θ + θh

2
b(e, e)

Remark 2. In equation (23), the term

θ + θh

2
b(e, e)√
a(e, e)

is a higher order term. Asymptotically, we have

θ + θh

2
b(e, e)√
a(e, e)

= O

(
hmin(s,p+1)+1

p

)
.

Remark 3. Defining the estimator η̃ as∑
K∈Th

h2
K

dK,maxp2
‖RK(uh, θh)‖2

L2(K) +
∑

F∈Fh

hF

dF,maxp
‖RF (uh)‖2

L2(F )


1
2

, (24)

the energy norm of the error satisfies also

√
a(e, e) ≤ C

√
dmax

dmin
η̃ +

θ + θh

2
b(e, e)√
a(e, e)

(25)

where the constant C depends on Ω, ΓD, and the regularity of Th.
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4.2 Auxiliary results

With each element K ∈ Th and each face F ∈ Fh, we associate a bubble function ψK and ψF ,
as in [15]. Note that ψK is bounded by 1 and vanishes outside of K. Similarly, ψF is bounded
by 1 and vanishes outside of ω̂F , the union of all elements having F as a face.

Proposition 2. Given an arbitrary integer k, there are constants γ1, . . . , γ5, which only depend
on k and the regularity of the mesh Th, such that the inequalities on an element K

‖v‖L2(K) ≤ γ1‖ψ1/2
K v‖L2(K) (26a)

|ψKv|H1(K) ≤ γ2h
−1
K ‖v‖L2(K) (26b)

and on a face F

‖w‖L2(F ) ≤ γ3‖ψ1/2
F w‖L2(F ) (27a)

|ψFw|H1(ω̂F ) ≤ γ4h
−1/2
F ‖w‖L2(F ) (27b)

‖ψFw‖L2(ω̂F ) ≤ γ5h
1/2
F ‖w‖L2(F ) (27c)

hold for all K ∈ Th, all F ∈ Fh, and all polynomials v, w of degree at most k defined on K
and ω̂F , respectively.

Proof. See [15] and the references therein.

Melenk and Wohlmuth [8] show also how the coefficients γi depend on the degree k in R2.

4.3 Local lower bound for eigenvectors

Proposition 3. For any element K in Th, we have
hK

p
‖RK(uh, θh)‖L2(K) ≤ C1

√
dK,max‖e‖a,K + C2hK

√
ρK‖θu− θhuh‖b,K (28)

where the positive constants C1 and C2 depend on p and the regularity of the mesh. ρK denotes
the value of ρ on the element K.

Proof. Consider the bubble function

wK = ψKRK(uh, θh).

Using (26a), we have

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1

∫
K
ψK |RK(uh, θh)|2

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1

∫
K

(∇ · σ(uh) + θhρuh) ·wK

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1

∫
K

(−σ(uh) · ε(wK) + ρθhuh ·wK)

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1

∫
K

σ(e) · ε(wK) + γ2
1

∫
K
ρ(θhuh − θu) ·wK
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Using Cauchy-Schwarz inequalities for aK and bK , we have

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1‖e‖a,K‖wK‖a,K + γ2
1‖θu− θhuh‖b,K

√
ρK‖wK‖L2(K)

We use now the boundedness of ψK and the continuity property of aK .

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1‖e‖a,K

√
dK,max|wK |H1(K)

+ γ2
1‖θu− θhuh‖b,K

√
ρK‖RK(uh, θh)‖L2(K)

Finally, using (26b), we get

‖RK(uh, θh)‖2
L2(K) ≤ γ2

1‖e‖a,K

√
dK,max

γ2

hK
‖RK(uh, θh)‖L2(K)

+ γ2
1

√
ρK‖θu− θhuh‖b,K‖RK(uh, θh)‖L2(K)

Remark 4. The term
hK‖θu− θhuh‖b,K

is a higher order term. Indeed, we have

‖θu− θhuh‖2
b,Ω = θ2 + θ2

h − 2θθhb(u,uh),

‖θu− θhuh‖2
b,Ω = θ2 + θ2

h + θθh(b(e, e)− 2),

‖θu− θhuh‖2
b,Ω = (θ − θh)2 + θθhb(e, e).

Asymptotically, we get

hK‖θu− θhuh‖b,K ≤ h‖θu− θhuh‖b,Ω = O

(
hmin(s,p+1)+1

ps

)
.

Proposition 4. For any face F in Fh, we have√
hF

p
‖RF (uh)‖L2(F ) ≤ C1

√
dmax‖e‖a,ω̂F

+ C2h
√
ρmax‖θu− θhuh‖b,ω̂F

(29)

where the positive constants C1 and C2 depend on p and the regularity of the mesh. ω̂F is the
union of all elements having F as a face.

Proof. Consider the bubble function

wF = ψFRF (uh).
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Using (27a), we have

‖RF (uh)‖2
L2(F ) ≤ γ2

3

∫
F
RF (uh) ·wF

We insert now the relation (22).

‖RF (uh)‖2
L2(F ) ≤ γ2

3aω̂F
(e,wF ) + γ2

3bω̂F
(θhuh − θu,wF )−

∑
K⊂ω̂F

γ2
3

∫
K
RK(uh, θh) ·wF

Using Cauchy-Schwarz inequalities for aω̂F
and bω̂F

, we obtain

‖RF (uh)‖2
L2(F ) ≤ γ2

3‖e‖a,ω̂F
‖wF ‖a,ω̂F

+ γ2
3‖θhuh − θu‖b,ω̂F

‖wF ‖b,ω̂F

+
∑

K⊂ω̂F

γ2
3‖RK(uh, θh)‖L2(K)‖wF ‖L2(K)

‖RF (uh)‖2
L2(F ) ≤ γ2

3‖e‖a,ω̂F

√
dmax|ψFRF (uh)|H1(ω̂F )

+ γ2
3‖θhuh − θu‖b,ω̂F

√
ρmax‖ψFRF (uh)‖L2(F )

+
∑

K⊂ω̂F

γ2
3‖RK(uh, θh)‖L2(K)‖ψFRF (uh)‖L2(F )

Finally, using (27b, 27c), we obtain

‖RF (uh)‖2
L2(F ) ≤ γ2

3‖e‖a,ω̂F
γ4h

−1/2
F

√
dmax‖RF (uh)‖L2(F )

+ γ2
3‖θhuh − θu‖b,ω̂F

√
ρmaxγ5h

1/2
F ‖RF (uh)‖L2(F )

+
∑

K⊂ω̂F

γ2
3‖RK(uh, θh)‖L2(K)γ5h

1/2
F ‖RF (uh)‖L2(F )

Since hF ≤ hK ≤ h, this estimate together with inequality (28) allows us to conclude the
proof.

Collecting estimates (28, 29), we have thus proven the following lower bound on the error,
for any element K ∈ Th,{

h2
K

dK,minp2
‖RK(uh, θh)‖2

L2(K) +
∑

F⊂∂K

αFhF

dF,minp
‖RF (uh)‖2

L2(F )

}1/2

≤ C

(√
dmax

dmin
‖e‖a,ω̂K

+ h

√
ρmax

dmin
‖θu− θhuh‖b,ω̂K

)
(30)

where αF = 1
2 , if F ∈ Fh,Ω, and αF = 1, otherwise. ω̂K is the union of all elements sharing

a face with K. Therefore, η yields, up to higher order terms, global upper and local lower
bounds on the error of an eigenvector.
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4.4 Global upper bound for eigenvalues

We show that η yields, up to higher order terms, an upper bound on the error of eigenvalues.

Proposition 5. The eigenvalue θ and its approximation θh satisfy

0 ≤ θh − θ ≤ Cη2 + h.o.t. (31)

where h.o.t denotes a higher order term

h.o.t. = Cη
θh + θ

2
b(e, e)√
a(e, e)

+
θh − θ

2
b(e, e)

The constants C depend on Ω, ΓD, and the regularity of Th.

Proof. We have seen previously that

b(e, e) = 2− 2b(u,uh).

Similarly, we have
a(e, e) = θ + θh − 2θb(u,uh).

Therefore, we obtain
θh − θ = a(e, e)− θb(e, e). (32)

Using (23), we bound the error

θh − θ ≤ Cη
√
a(e, e) +

θh + θ

2
b(e, e)− θb(e, e)

θh − θ ≤ Cη
√
a(e, e) +

θh − θ

2
b(e, e)

θh − θ ≤ C2η2 + Cη
θh + θ

2
b(e, e)√
a(e, e)

+
θh − θ

2
b(e, e)

Remark 5. From relation (32), we can expect that the effectivity of the estimator η for the
eigenvalue will be close to the square root of the effectivity for the eigenvector.

5 Numerical results

In this section, we present the numerical results. We study the effectivity of the estimator η
for the eigenvalues, i.e.

θη

θh − θ
,

for heterogeneous, isotropic, one-dimensional, and three-dimensional elastic beams.
To compute the eigenpairs, we use a combination of implicitly restarted Lanczos with a

domain-decomposition linear solver, as described in [12].
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5.1 A one-dimensional elastic beam

First we consider a beam of length L = 10 made of two materials. For the left half (0 ≤ x ≤ 5),
the material parameters are (E1, ν1 = 0, ρ1 = 10−1), while, for the right half (5 ≤ x ≤ 10),
they are (E2 = 107, ν2 = 0, ρ2 = ρ1). The beam is clamped at one end and free at the other.

The exact eigenvalues for this case are given by the following transcendental equation

cos

(
L

2

√
θρ1

E1

)
cos

(
L

2

√
θρ2

E2

)
=

√
ρ2E2

ρ1E1
sin

(
L

2

√
θρ1

E1

)
sin

(
L

2

√
θρ2

E2

)
. (33)

When E1 is equal to E2 (i.e. the homogeneous case), all the eigenvectors are analytic. When
the Young moduli differ, the eigenvectors belong to H5/2(Ω) [9].

The mesh is uniform and matches the discontinuity for the Young modulus. A summary
of the effectivity indices and convergence rates is given in Tables 1 and 2 for the first four
eigenvalues when the mesh is refined and when E1 is changed. In accordance with (31), the
effectivity indices do not depend on the eigenvalue, nor on the Young modulus. However, there
is a slight decrease with the polynomial degree.

With linear elements, the convergence rates are consistent with the a priori estimates (16).
However, when the structure is heterogeneous (E1 6= E2) and quadratic elements are used, the
convergence rates are better than the ones given by the a priori estimates (16). We believe
that this superconvergence results from the matching of the mesh with the discontinuity in E.

5.2 A three-dimensional elastic beam

Here we study an isotropic elastic beam made of three-dimensional hexahedral elements. Figure
1 describes the geometry of the beam for the depth and height equal to 1. We assume that

(E2, !2, "2)(E1, !1, "1)

L = 5 L = 5

Figure 1. Three-dimensional heterogeneous elastic beam

the densities and Poisson ratios satisfy

ρ1 = ρ2 = 10−1 and ν1 = ν2 = 0.

The Young modulus E2 is set to 107 and we vary E1. For these isotropic materials, we remark
that jumps in density are equivalent to jumps in Young modulus. Therefore, we present results
for jumps in Young modulus.
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Eigenvalue λ1

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 22.7842 1.9627 27.0328 2.0743 22.7368 1.9631
.5 23.3975 1.9816 25.5247 2.0415 23.3820 1.9817
.25 23.6938 1.9909 24.7366 2.0219 23.7016 1.9909
.125 23.8670 24.3455 23.8572

Eigenvalue λ2

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 22.6615 1.9639 23.8884 1.9961 22.3447 1.9702
.5 23.3599 1.9818 24.0003 1.9998 23.2463 1.9824
.25 23.6906 1.9909 24.0199 2.0006 23.6581 1.9910
.125 23.8420 24.0146 23.8393

Eigenvalue λ3

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 22.4555 1.9673 23.4206 2.0082 22.2375 1.9930
.5 23.2914 1.9821 23.7436 1.9994 23.0150 1.9846
.25 23.6710 1.9910 23.9323 1.9997 23.5871 1.9912
.125 23.8415 23.9862 23.8246

Eigenvalue λ4

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 22.2466 1.9742 24.0559 2.0369 21.9762 1.4348
.5 23.1949 1.9828 23.4837 2.0031 22.7822 1.9898
.25 23.6430 1.9910 23.8413 1.9999 23.5294 1.9916
.125 23.8351 23.9725 23.9724

Table 1. Effectivity and convergence rates predicted by the esti-
mator for the first four modes of the one-dimensional beam, using
linear elements
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Eigenvalue λ1

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 15.0314 4.0008 17.0846 4.0458 15.1094 4.0019
.5 15.0084 4.0001 16.4869 4.0240 15.0315 4.0008
.25 15.0031 4.0000 16.1989 4.0121 15.0086 4.0002
.125 14.8744 16.0590 15.0072

Eigenvalue λ2

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 15.2787 4.0070 17.9285 4.0426 15.9287 4.0122
.5 15.0750 4.0021 16.8285 4.0281 15.2787 4.0069
.25 15.0194 4.006 16.3584 4.0138 15.0750 4.0022
.125 15.0048 16.1301 15.0194

Eigenvalue λ3

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 15.7517 4.0171 19.5257 4.0222 17.2892 4.0109
.5 15.2067 4.0059 17.5794 4.0345 15.7518 4.0171
.25 15.0537 4.0017 16.7450 4.0170 15.2067 4.0059
.125 15.0137 16.2243 15.0537

Eigenvalue λ4

E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
1.0 16.4096 4.0275 22.1859 3.9519 18.6584 3.9566
.5 15.4007 4.0112 19.1225 4.0402 16.4098 4.0275
.25 15.1049 4.0032 17.7276 4.0214 15.4007 4.0112
.125 15.0267 16.7943 15.1049

Table 2. Effectivity and convergence rates predicted by the esti-
mator for the first four modes of the one-dimensional beam, using
quadratic elements
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No boundary condition is applied to the structure. Consequently, the beam can exhibit
modes of bending, extension, torsion, or mixed type. We only consider quadratic elements,
since linear elements are very poor at approximating bending and torsion responses. The mesh
always matches the discontinuity in Young modulus.

In Figure 2, some bending, extension, and torsion modes are depicted, when E1 is changed.
Note that by symmetry of the beam, the bending mode has a multiplicity equal to 2. The
estimator η detected the multiplicities, as it returned the same value for multiple eigenpairs.

A summary of the effectivity indices and point-by-point convergence rates is given in Table
3. We draw the following comments.

• The torsion modes are the most difficult modes to approximate. The approximation has
not reached yet the asymptotic convergence.

• The estimator never underestimates the error.

• Within a class of modes (bending, extensional, or torsional), the effectivity behaves
similarly.

• The effectivity for the extension mode is similar to the one-dimensional beam.

• Similarly to the one-dimensional beam, the convergence rates are better than the ones
predicted by the a priori estimates (16).

Remark 6. Computing the effectivity requires the values of the exact eigenvalues, which are
not explicitly known. We obtained reliable approximate values by a Richardson extrapolation
procedure.

5.3 Effect of Poisson ratio

Equation (13) shows that the stability constant depends on the Poisson ratio. All of the
previous numerical experiments involved materials with ν = 0. In order to assess the effect of
Poisson ratio on the estimator, we consider in this section the three-dimensional modes of the
elastic beam with material parameters (E = 107, ν = 0.3, ρ = 10−1). In the incompressible
limit, only the lower bound (30) for the estimator η degenerates.

Table 4 shows the point-by-point convergence rates and effectivity indices for the three-
dimensional bar with ν = 0 and ν = 0.3. From the table, we draw the following conclusions.

• The estimator never underestimates the error.

• The convergence rates asymptotically approach 4.0.

• Within a class of modes (bending, extensional, or torsional), the effectivity behaves
similarly.

• The efficiency for the extension mode is the most affected by the change in Poisson ratio.
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1st Bending (E1 = E2) 1st Bending (E1 = 102E2) 1st Bending (E1 = 104E2)

2nd Bending (E1 = E2) 2nd Bending (E1 = 102E2) 2nd Bending (E1 = 104E2)

Extension (E1 = E2) Extension (E1 = 102E2) Extension (E1 = 104E2)

1st Torsion (E1 = E2) 1st Torsion (E1 = 102E2) 1st Torsion (E1 = 104E2)

2nd Torsion (E1 = E2) 2nd Torsion (E1 = 102E2) 2nd Torsion (E1 = 104E2)

Figure 2. Modal shapes for three-dimensional beam
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First pair of bending modes
E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
.5 7.7540 3.9767 7.2749 3.8042 7.2747 3.7472
.25 7.7558 3.9953 7.7080 3.8734 7.7085 3.8617
.125 7.7392 4.0003 7.8709 3.7846 7.9003 3.7671
.0625 7.7261 8.9662 9.1515

Second pair of bending modes
E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
.5 7.7782 3.9419 7.3168 3.6928 7.3111 3.6275
.25 7.8882 3.9855 7.7663 3.7197 7.7826 3.7036
.125 7.8991 3.9975 8.1560 3.6441 8.1843 3.6261
.0625 7.8945 10.0327 10.0840

First extension mode
E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
.5 15.0240 4.0007 15.8476 4.0380 15.8586 4.0026
.25 14.9312 4.0000 15.3856 4.0182 15.3980 4.0012
.125 14.9242 3.9992 15.1796 4.0086 15.3007 4.0004
.0625 14.9321 15.0857 15.2396

First torsion mode
E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
.5 4.2465 3.2326 1.3799 1.7307 1.3814 1.9367
.25 5.6161 3.5800 4.2206 2.7388 4.2360 2.6770
.125 6.1417 3.6937 6.4223 2.9994 6.5031 2.8854
.0625 7.1905 11.5716 11.9608

Second torsion mode
E1 = E2 E1 = 102E2 E1 = 104E2

h Effectivity Conv. Rate Effectivity Conv. Rate Effectivity Conv. Rate
.5 4.2799 3.2197 1.4320 1.6146 1.4351 1.8911
.25 5.6872 3.5835 4.2613 2.6325 4.2783 2.5770
.125 6.2080 3.6989 6.6576 2.9333 6.7468 2.8127
.0625 7.2429 12.4602 12.8818

Table 3. Effectivity and convergence rates predicted by the es-
timator for the first modes of the three-dimensional beam, using
quadratic elements
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First pair of bending modes
ν = 0 ν = 0.3

h Effectivity Conv. Rate Effectivity Conv. Rate
.5 7.7540 3.9767 6.6520 3.5846
.25 7.7558 3.9953 8.1078 3.8813
.125 7.7392 4.0003 8.4089 3.9445
.0625 7.7261 8.6287

Second pair of bending modes
ν = 0 ν = 0.3

h Effectivity Conv. Rate Effectivity Conv. Rate
.5 7.7782 3.9419 6.4904 3.4031
.25 7.8882 3.9855 8.6357 3.8180
.125 7.8991 3.9975 9.2163 3.9298
.0625 7.8945 9.5162

First extension mode
ν = 0 ν = 0.3

h Effectivity Conv. Rate Effectivity Conv. Rate
.5 15.0240 4.0007 22.1362 3.7538
.25 14.9312 4.0000 24.4615 3.9208
.125 14.9242 3.9992 25.2414 3.9547
.0625 14.9321 25.8862

First torsion mode
ν = 0 ν = 0.3

h Effectivity Conv. Rate Effectivity Conv. Rate
.5 4.2465 3.2326 1.3473 1.9692
.25 5.6161 3.5800 4.3447 3.2324
.125 6.1417 3.6937 5.7956 3.5850
.0625 7.1905 7.2552

Second torsion mode
ν = 0 ν = 0.3

h Effectivity Conv. Rate Effectivity Conv. Rate
.5 4.2799 3.2197 1.3529 1.8408
.25 5.6872 3.5835 4.6548 3.2213
.125 6.2080 3.6989 6.2084 3.6013
.0625 7.2429 7.6723

Table 4. Effect of Poisson ratio on effectivity and convergence
rates predicted by the estimator for a homogeneous, isotropic,
three-dimensional beam
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6 Conclusions

In this paper, an a posteriori error estimator for eigenvalue analysis of three-dimensional elastic
structures has been studied. This explicit estimator can deal with heterogeneous structures
and high-order discretization. The estimator was tested with several model problems. It
was verified that the convergence rates were consistent with a priori estimates and that the
multiplicative constants were independent of jumps in material properties.
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